Cryptographie

Avant de mettre en place des mécanismes de protection, il est essentiel de
comprendre les objectifs fondamentaux qu'elle poursuit:
ils sont les suivants:
Confidentialité : empécher un tiers de lire les données.
Authenticité : garantir I'identité de I'expéditeur.
Intégrité : vérifier que les données n'ont pas été modifiées.
e Non-répudiation : prouver qu'un message a bien été envoyé par une personne.
Commencons par un peu de théorie...

1- Le chiffrement symétrique

Le chiffrement symétrique repose sur une clé secrete partagée entre I'expéditeur et le
destinataire.

1.L'émetteur choisit une clé secrete.

2.1l chiffre le message a l'aide d'un algorithme et de cette clé.

3.1l transmet le message chiffré (chiffre).

4.Le récepteur, qui connait la méme clé, déchiffre le message.
La clé doit étre échangée de maniere sécurisée, sinon un attaquant peut intercepter le
message et la clé.

Exemple avec Fernet (AES + clé générée automatiquement) :

from cryptography.fernet import Fernet

1

2

3 # Génération et partage de la clé

4 cle = Fernet.generate_key()

5 cipher = Fernet(cle)

6

7 # Chiffrement

8 message = "Bonjour™.encode()

9 message_chiffre = cipher.encrypt(message)

10 print("Chiffré :", message_chiffre)

11

12 # Déchiffrement

13 message_dechiffre = cipher.decrypt(message_chiffre)
14 print("Déchiffre :", message_dechiffre.decode())

Page 1 sur 11




2- Le chiffrement asymétrique

Le chiffrement asymétrique (ou cryptographie a clé publique) repose sur deux clés
différentes :

e une clé publique (connue de tous),

e une clé privée (gardée secréte).
Pour chiffrer un message on utilise la clé publique du destinataire et pour déchiffrer le
message on utilise la clé privée du destinataire.
Ce systéme est asymétrique car les clés sont différentes mais liees mathématiquement.

Bob crée
e uneclé publique
e uneclé privé v,

Bob publie sa clé publique

. . _) °
qui est maintenant >

accessible a tous

Alice récupére la clé
¢ — ... publique de Bob car elle
» 2 veut lui envoyer un
message

Alice chiffre son message
avec la clé publique de Bob

’/

>

7 & Alice envoie son message
chiffré a Bob

Bob déchiffre le message
avec sa clé privé

&>

Page 2 sur 11



1 from cryptography.hazmat.primitives.asymmetric import rsa, padding

2 from cryptography.hazmat.primitives import hashes

3

4 # Genération des cleés

5 private_key = rsa.generate_private_key(public_exponent=£5537, key_size=2848)
6 public_key = private_key.public_key()

7

8 # Chiffrement avec la clé publique

9 message = b"Message secret”

18 ciphertext = public_key.encrypt(

11 message,

12 padding.0AEP(mgf=padding.MGF1l(algorithm=hashes.SHA256()), algorithm=hashes.SHA256(), label=None)
13 )

14

15 # Déchiffrement avec la clé privée

16 plaintext = private_key.decrypt(

17 ciphertext,

18 padding.OAEP(mgf=padding.MGF1l(algorithm=hashes.SHA256()), algorithm=hashes.SHA256(), label=None)
19 )

20

21 print(“Déchiffré :", plaintext.decode())

22

Le CRC est une méthode de détection d’erreurs utilisée lors de la transmission de
données.

Il ne chiffre pas, ne protége pas contre 'espionnage, mais permet de vérifier que les
données n'ont pas été altérées (par une erreur de transmission ou un défaut de
stockage).

Principe:
1.Le message est traité comme une longue suite de bits.
2.0n le divise (modulo 2) par un polyndme générateur (représenté lui aussi par une
suite de bits).

3.Le reste de cette division (appelé le CRC) est ajouté a la fin du message.

4.Le récepteur refait le calcul :
o Sile nouveau reste est zéro, alors le message est valide (a priori non corrompu).
o Sinon, il y a eu une erreur de transmission.

\k\_1’

Page 3 sur 11



import zlib

message = b"Bonjour"
crc = z1ib.crc32(message)
print("“CRC :", hex(crc))

O v b w N

Le CRC ne garantit pas la sécurité des données (pas de clé, pas de chiffrement).

Il permet uniquement de détecter certaines erreurs accidentelles (changement d'un ou
plusieurs bits).

Il est utilisé dans :

les protocoles réseau (Ethernet, TCP/IP),

les fichiers compressés (ZIP),

les CD/DVD, disques durs, etc.

3- Fonctions de hachage

Une fonction de hachage transforme une donnée en une empreinte numérique (ou
condensat) de taille fixe. Elle possede plusieurs propriétés essentielles :
e Non-réversibilité : il est impossible de retrouver le message original a partir de
I'empreinte.
e Unicité : deux messages différents ont tres peu de chances d'avoir la méme
empreinte (collision).
¢ Sensibilité aux modifications : une petite modification du message entraine une
empreinte complétement différente.
Concrétement, comment cela fonctionne ?
Lorsqu'on applique une fonction de hachage a un message, elle parcourt le contenu
(souvent octet par octet) et applique une série d'opérations mathématiques et
logiques pour produire une empreinte. Cette empreinte est unique pour chaque
message (avec une probabilité trés élevée).
Elle est utilisée pour :
e Vérifier I'intégrité (ex : comparer deux hachages).
e Stocker des mots de passe sous forme sécurisée (seule I'empreinte est
enregistrée).
e Signatures numériques (hachage du message signé).

import hashlib

message = b"Bonjour"
hash_obj = hashlib.sha256(message)
print("SHA-256 :", hash_obj.hexdigest())

0O R ® W 0~

Page 4 sur 11



4. L'intégrité avec HMAC

HMAC est une méthode utilisée pour garantir 'intégrité et 'authenticité d'un message.
Il ne chiffre pas les données comme AES, mais il génére un code d'authentification qui permet
de vérifier qu'un message n'a pas été altére.

Principe de fonctionnement HMAC ?
HMAC utilise une fonction de hachage cryptographique (comme SHA-256) combinée a une clé
secrete pour produire une signature unique du message.
1.Préparation de la clé
o Sila clé est trop longue, elle est d'abord hachée.
o Sielle est trop courte, elle est complétée avec des zéros.
2.Concaténation et hachage
o Laclé est mélangée avec un premier masque (opad) et combinée avec le message.
o Le tout est ensuite haché.
o Le résultat est mélangé avec un second masque (ipad) et re-haché.
3.Génération du code HMAC
o Le résultat final est un code court et unique qui permet de vérifier I'authenticité du
message.

Vérification d'un HMAC
Pour vérifier gu'un message n’a pas été modifié :
e Le destinataire reproduit le calcul HMAC avec la méme clé.
e Sile HMAC généré correspond a celui recu, le message est authentique.

import hmac
import hashlib

message = b"Message secret”

W 00 <~ &h v .

cle = b"ma_cle"
mac = hmac.new(cle, message, hashlib.sha256)
print("HMAC :", mac.hexdigest())

(17]

N

Page 5sur 11



HTTPS (HyperText Transfer Protocol Secure) est une version sécurisée du protocole
HTTP.

Il repose sur le protocole TLS (Transport Layer Security) pour chiffrer les
communications entre le navigateur et le serveur web.

Principes de fonctionnement:
Le serveur web posséde une paire de clés (publique/privée) et un certificat
numeérique (souvent signé par une autorité de certification).
Lorsqu'un client se connecte via HTTPS, il recoit ce certificat.
Le navigateur vérifie la validité du certificat (chaine de confiance).
Ensuite, le client chiffre une clé de session avec la clé publique du serveur.
Cette clé est utilisée pour le chiffrement symétrique des échanges (plus rapide).
Ainsi, HTTPS garantit :

¢ La confidentialité (données chiffrées)

e |'authenticité du serveur (certificat)

e L'intégrité des données transmises

Tu peux visualiser le certificat en cliquant sur le cadenas dans l'url.

Visionneuse de certificats : plateforme-eve-education.com

Général Détails

Emis pour
Nom commun (CN) plateforme-eve-education.com
Organisation (O) <Ne fait pas partie du certificat>
Unité d'organisation (UQ) <Ne fait pas partie du certificat>
Emis par
Nom commun (CN) Avast Web/Mail Shield Root
Organisation (O) Avast Web/Mail Shield

Unité d'organisation (UOQ)  generated by Avast Antivirus for SSL/TLS scanning

Période de validité
Date d'émission samedi 26 avril 2025 & 16:12:33
Date d'expiration vendredi 25 juillet 2025 & 16:12:32

Empreintes digitales SHA-
256

Certificat a99deab3d5545a853a095392ca1d2c5f0900722232b3802da956f
b7ffcB43713

Clé publique bfae96caed9c549d680e82ed45acd 16falc3fof45bcb7dd4f040e1 cf
6e113cfab

Page 6 sur 11



6. Simulation

Chiffrement symétrique (XOR)

Ouvre le fichier crypto.py dans ton IDE et analysons le:

#i### fonction qui récupére le code ASCII #####
def get_utf8(texte) :
Renvoie le tableau des codes ASCII/UTFB de chaque caractére du message
Entrée : texte (type str)
Sortie : un tableau (type list) d'entiers
liste_ascii=[]
for i in texte:
liste_ascii.append(ord(i))
return liste_ascii

assert get_utf8("NSI") == [78, 83, 73]

La fonction get_utf8() prend une chaine de caractéres en argument et renvoie un
tableau contenant les codes ASCII de chaque caractere. Elle utilise pour ¢a la fonction
ord() qui renvoie le code ASCII d'un caractere.

##### fonction qul récupére les caractéres #####

def get_string(tab_utf8) :
Renvoie la chaine de caractéres dont les codes ASCII/UTF8 sont les valeurs de tab_utf8
Entrée : un tableau (type list) d'entiers
Sortie : une chaine de caractéres (type str)

chaine=""

for i in tab_utfs:
chaine+=chr(i)

return chaine

assert get_string([78, 83, 73]) == "NSI"

La fonction get_string() fait 'opération inverse. Elle recoit en argument une liste d’entier
et renvoie les caractéres dont les codes ASCII correspondent a ces entiers. Elle utilise
pour ca la fonction chr() qui renvoie le caractére dont le code ASCII est donné.

Page 7 sur 11



##### fonction qui réalise un XOR entre 2 tableaux ##F###

def chiffre_XOR(texte, clef) :
""" Renvoie le tableau d'entiers obtenu par chiffrement XOR de texte avec clef comme clé de chiffrement
Entrées : texte et clef sont de type str
Sortie : un tableau (type list) d'entiers

tab_utf8_texte = get_utfB(texte)

tab_utf8_clef = get_utf8(clef)

tab_xor = []

for k in range(len(texte)) :
nb_xor = tab_utf8_texte[k] * tab_utf8_clef[k¥len(clef)]
tab_xor.append(nb_xor)

return tab_xor

assert chiffre_XOR("UN MESSAGE TRES SECRET", "NSI") ==
[27, 29, 1es, 3, 22, 26, 29, 18, 14, 11, 115, 29, 28, 155, 26, 118, @, 12, 13, 1, 12, 26]

print(chiffre_XOR("UN MESSAGE TRES SECRET", "NSI"))

La fonction chiffre_XOR chiffre un message a l'aide d'une clé en utilisant le chiffrement XOR:
e Elle prend en argument un texte et une clé (tous les 2 de type string)
¢ Elle convertit ces 2 String en nombre entier en utilisant la fonction get_utf8()
e Elle effectue 'opération XOR (opérateur ) entre chaque entier du message et chaque
entier de la clé ( la clé est répétée si elle est plus petite que le message (k%len(clef))
e Le résultat de 'opération XOR est stocké dans un tableau: c'est notre message chiffré

def dechiffre_XOR(tab_crypte, clef) :
""" Renvoie le texte obtenu par déchiffrement du tableau tab_crypté avec clef comme clé de chiffrement
Entrées
tab_crypte est un tableau d'entiers
clef est de type str
Sortie : une chaine de caractéres

o

chaine=""
tab_utf8_clef = get_utf8(clef)
tab_xer = []

for k in range(len(tab_crypte)) :
nb_xor = tab_crypte[k] * tab_utf8_clef[k¥%len(clef)]
tab_xor.append(nb_xor)

chaine=get_string(tab_xor)

return chaine

assert dechiffre_XOR([27, 29, 185, 3, 22, 26, 29, 18, 14, 11, 115, 29, 28, 155, 26, 11e, @, 12, 13, 1, 12, 26], "NSI") \
== "UN MESSAGE TRES SECRET"

print(dechiffre_XOR([27, 29, 185, 3, 22, 26, 29, 18, 14, 11, 115, 29, 28, 155, 26, 118, @, 12, 13, 1, 12, 26], "NSI"))

La fonction dechiffre_XOR déchiffre un message a l'aide d’'une clé en utilisant le chiffrement
XOR:
e Elle prend en argument un tableau contenant notre message chiffré et une clé 2 de
type string
e Elle convertit la clé en nombre entier en utilisant la fonction get_utf8()
e Elle effectue I'opération XOR (opérateur A) entre chaque entier du message et chaque
entier de la clé (la clé est répétée si elle est plus petite que le message (k%len(clef))
e Le résultat de 'opération XOR est convertit en string a I'aide de la fonction get_string():

c'est notre message déchiffré Es

Page 8 sur 11



Chiffrement asymétrique

Notre situation est la suivante:
e Alice génere une clé privée et une clé publique
Bob utilise la clé publique d’Alice pour crypter son message.
Bob envoie son message crypté a Alice.
Alice décrypte le message recu avec sa clé privée

from cryptography.hazmat.primitives.asymmetric import rsa, ﬁadding
from cryptography.hazmat.primitives import serialization, hashes

# Génération de la clé priveée

private key = rsa.generate private key(
public exponent=65537,
key size=4896

)

# Génération de la clé publique

public key = private key.public key()

# Sérialisation de la clé privée

private pem = private key.private bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.TraditionalOpensstL,
encryption_algorithm=seria1ization.NoEncryption(ﬂ

)

# Sérialisation de la clé publique

public_pem = public_key.public_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PublicFormat.subjectPublickeyInfo

)

# Affichage des cles
print(“Cclé privee :\n", private_pem.decode())
print("\nClé publique :\n", public_pem.decode())

# écriture du fichier contenant la clé publique
with open("public_key.pem”, "wb") as g:
g.write(public pem)

# écriture du fichlier contenant la cle privée
with open(“private_key.pem", "wb") as g:
g.write(private pem)

Page 9 sur 11




La méthode generate_private_key() de la bibliothéque rsa, permet de générer une clé
privée.

En peut en déduire une clé publique en appelant la méthode public_key() sur cette clé
privée.

On doit ensuite sérialiser ces clés pour les stocker dans les fichiers public_key.pem et
private_key.pem.

from cryptography.hazmat.primitives.asymmetric import rsa, padding
from cryptography.hazmat.primitives import serialization, hashes
import sys

# Message a chiffrer
message = b"Je suis Bob, comment ca va ?"

# Récupération de la clé publique
with open("public_key.pem”, "rb") as g:
key = serialization.load pem public key(g.read())

# Chiffrement avec la clé publique
ciphertext = key.encrypt(
message,
padding.OAEP(
mgf=padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256( ),
label=None

)

# Affichage du message chiffre
print("\nMessage chiffré :", ciphertext.hex())

# Ecriture du message chiffré dans un fichier
with open("datatext.bin", "wb") as f:
f.write(ciphertext)

Page 10 sur 11



La méthode load_pem_public_key() permet de récupérer la clé publique dans le fichier
public_key.pem.

La méthode encrypt() permet ensuite de chiffrer le message en SHA_256.

Le message chiffré est enfin stocké dans un fichier pour étre transmis.

from cryptography.hazmat.primitives.asymmetric import rsa, padding
from cryptography.hazmat.primitives import serialization, hashes

# Récupération cle privee dans le fichier
with open("private key.pem™, "rb") as f:
key = serialization.load pem_private_key(
f.read(),
password=None # Mettre un mot de passe si la clé est protégee

)

# Reécupération du message chiffreé
with open(“"datatext.bin", "rb") as f:
ciphertext = f.read()

# Déchiffrement du message avec la clé privée
decrypted message = key.decrypt(
ciphertext,
padding.OAEP(
mgf=padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256(),
label=None

)

# Affichage du message déchiffreé
print("\nMessage déchiffre

-Tl

:", decrypted message.decode())

Tout d’'abord, la clé privée est récupérée dans le fichier private_key.pem.
On récupére ensuite le message chiffré dans le fichier datatext.bin.
On déchiffre enfin le message avec la méthode decrypt()

Page 11 sur 11



