
Le chiffrement symétrique repose sur une clé secrète partagée entre l’expéditeur et le
destinataire.

1.L’émetteur choisit une clé secrète.
2. Il chiffre le message à l’aide d’un algorithme et de cette clé.
3. Il transmet le message chiffré (chiffre).
4.Le récepteur, qui connaît la même clé, déchiffre le message.

La clé doit être échangée de manière sécurisée, sinon un attaquant peut intercepter le
message et la clé.

Exemple avec Fernet (AES + clé générée automatiquement) :

Cryptographie

Page 1 sur 11

Avant de mettre en place des mécanismes de protection, il est essentiel de
comprendre les objectifs fondamentaux qu’elle poursuit:
ils sont les suivants:

Confidentialité : empêcher un tiers de lire les données.
Authenticité : garantir l'identité de l'expéditeur.
Intégrité : vérifier que les données n'ont pas été modifiées.
Non-répudiation : prouver qu'un message a bien été envoyé par une personne.

Commençons par un peu de théorie...

1- Le chiffrement symétrique

Page 2 sur 11

Le chiffrement asymétrique (ou cryptographie à clé publique) repose sur deux clés
différentes :

une clé publique (connue de tous),
une clé privée (gardée secrète).

Pour chiffrer un message on utilise la clé publique du destinataire et pour déchiffrer le
message on utilise la clé privée du destinataire.
Ce système est asymétrique car les clés sont différentes mais liées mathématiquement.

Bob crée
une clé publique
 une clé privé

Bob publie sa clé publique
qui est maintenant
accessible à tous

Alice récupère la clé
publique de Bob car elle
veut lui envoyer un
message

Alice chiffre son message
avec la clé publique de Bob

Alice envoie son message
chiffré à Bob

Bob déchiffre le message
avec sa clé privé

1

2

3

4

5

6

2- Le chiffrement asymétrique

Page 3 sur 11

3- Le CRC

Le CRC est une méthode de détection d’erreurs utilisée lors de la transmission de
données.
Il ne chiffre pas, ne protège pas contre l’espionnage, mais permet de vérifier que les
données n’ont pas été altérées (par une erreur de transmission ou un défaut de
stockage).

Principe:
1.Le message est traité comme une longue suite de bits.
2.On le divise (modulo 2) par un polynôme générateur (représenté lui aussi par une

suite de bits).
3.Le reste de cette division (appelé le CRC) est ajouté à la fin du message.
4.Le récepteur refait le calcul :

Si le nouveau reste est zéro, alors le message est valide (a priori non corrompu).
Sinon, il y a eu une erreur de transmission.

Page 4 sur 11

Le CRC ne garantit pas la sécurité des données (pas de clé, pas de chiffrement).
Il permet uniquement de détecter certaines erreurs accidentelles (changement d’un ou
plusieurs bits).
Il est utilisé dans :
les protocoles réseau (Ethernet, TCP/IP),
les fichiers compressés (ZIP),
les CD/DVD, disques durs, etc.

3- Fonctions de hachage

Une fonction de hachage transforme une donnée en une empreinte numérique (ou
condensat) de taille fixe. Elle possède plusieurs propriétés essentielles :

Non-réversibilité : il est impossible de retrouver le message original à partir de
l'empreinte.
Unicité : deux messages différents ont très peu de chances d'avoir la même
empreinte (collision).
Sensibilité aux modifications : une petite modification du message entraîne une
empreinte complètement différente.

Concrètement, comment cela fonctionne ?
Lorsqu'on applique une fonction de hachage à un message, elle parcourt le contenu
(souvent octet par octet) et applique une série d'opérations mathématiques et
logiques pour produire une empreinte. Cette empreinte est unique pour chaque
message (avec une probabilité très élevée).
Elle est utilisée pour :

Vérifier l'intégrité (ex : comparer deux hachages).
Stocker des mots de passe sous forme sécurisée (seule l'empreinte est
enregistrée).
Signatures numériques (hachage du message signé).

HMAC est une méthode utilisée pour garantir l’intégrité et l’authenticité d’un message.
Il ne chiffre pas les données comme AES, mais il génère un code d’authentification qui permet
de vérifier qu’un message n’a pas été altéré.

Principe de fonctionnement HMAC ?
HMAC utilise une fonction de hachage cryptographique (comme SHA-256) combinée à une clé
secrète pour produire une signature unique du message.

1.Préparation de la clé
Si la clé est trop longue, elle est d’abord hachée.
Si elle est trop courte, elle est complétée avec des zéros.

2.Concaténation et hachage
La clé est mélangée avec un premier masque (opad) et combinée avec le message.
Le tout est ensuite haché.
Le résultat est mélangé avec un second masque (ipad) et re-haché.

3.Génération du code HMAC
Le résultat final est un code court et unique qui permet de vérifier l’authenticité du
message.

Vérification d’un HMAC
Pour vérifier qu’un message n’a pas été modifié :

Le destinataire reproduit le calcul HMAC avec la même clé.
Si le HMAC généré correspond à celui reçu, le message est authentique.

Page 5 sur 11

4. L’intégrité avec HMAC

Page 6 sur 11

HTTPS (HyperText Transfer Protocol Secure) est une version sécurisée du protocole
HTTP.
Il repose sur le protocole TLS (Transport Layer Security) pour chiffrer les
communications entre le navigateur et le serveur web.

Principes de fonctionnement:
Le serveur web possède une paire de clés (publique/privée) et un certificat
numérique (souvent signé par une autorité de certification).
Lorsqu'un client se connecte via HTTPS, il reçoit ce certificat.
Le navigateur vérifie la validité du certificat (chaîne de confiance).
Ensuite, le client chiffre une clé de session avec la clé publique du serveur.
Cette clé est utilisée pour le chiffrement symétrique des échanges (plus rapide).
Ainsi, HTTPS garantit :

La confidentialité (données chiffrées)
L'authenticité du serveur (certificat)
L'intégrité des données transmises

Tu peux visualiser le certificat en cliquant sur le cadenas dans l’url.

5. HTTPS

Page 7 sur 11

6. Simulation

Chiffrement symétrique (XOR)

Ouvre le fichier crypto.py dans ton IDE et analysons le:

La fonction get_utf8() prend une chaine de caractères en argument et renvoie un
tableau contenant les codes ASCII de chaque caractère. Elle utilise pour ça la fonction
ord() qui renvoie le code ASCII d’un caractère.

La fonction get_string() fait l’opération inverse. Elle reçoit en argument une liste d’entier
et renvoie les caractères dont les codes ASCII correspondent à ces entiers. Elle utilise
pour ça la fonction chr() qui renvoie le caractère dont le code ASCII est donné.

Page 8 sur 11

La fonction chiffre_XOR chiffre un message à l’aide d’une clé en utilisant le chiffrement XOR:
Elle prend en argument un texte et une clé (tous les 2 de type string)
Elle convertit ces 2 String en nombre entier en utilisant la fonction get_utf8()
Elle effectue l’opération XOR (opérateur ^) entre chaque entier du message et chaque
entier de la clé (la clé est répétée si elle est plus petite que le message (k%len(clef))
Le résultat de l’opération XOR est stocké dans un tableau: c’est notre message chiffré

La fonction dechiffre_XOR déchiffre un message à l’aide d’une clé en utilisant le chiffrement
XOR:

Elle prend en argument un tableau contenant notre message chiffré et une clé 2 de
type string
Elle convertit la clé en nombre entier en utilisant la fonction get_utf8()
Elle effectue l’opération XOR (opérateur ^) entre chaque entier du message et chaque
entier de la clé (la clé est répétée si elle est plus petite que le message (k%len(clef))
Le résultat de l’opération XOR est convertit en string à l’aide de la fonction get_string():
c’est notre message déchiffré

Page 9 sur 11

Chiffrement asymétrique

Notre situation est la suivante:
Alice génère une clé privée et une clé publique
Bob utilise la clé publique d’Alice pour crypter son message.
Bob envoie son message crypté à Alice.
Alice décrypte le message reçu avec sa clé privée

crypto_alice.py

Page 10 sur 11

La méthode generate_private_key() de la bibliothèque rsa, permet de générer une clé
privée.
En peut en déduire une clé publique en appelant la méthode public_key() sur cette clé
privée.
On doit ensuite sérialiser ces clés pour les stocker dans les fichiers public_key.pem et
private_key.pem.

crypto_bob.py

Page 11 sur 11

La méthode load_pem_public_key() permet de récupérer la clé publique dans le fichier
public_key.pem.
La méthode encrypt() permet ensuite de chiffrer le message en SHA_256.
Le message chiffré est enfin stocké dans un fichier pour être transmis.

crypto-alice2.py

Tout d’abord , la clé privée est récupérée dans le fichier private_key.pem.
On récupère ensuite le message chiffré dans le fichier datatext.bin.
On déchiffre enfin le message avec la méthode decrypt()

