
Tkinter est une bibliothèque intégrée à Python qui permet de créer des interfaces
graphiques (GUI).
Elle permet de :

Afficher des fenêtres (comme les fenêtres d'une application classique)
Ajouter des boutons, textes, images, zones de saisie, etc.
Gérer des interactions utilisateur : clics, entrées clavier, etc.

Notre jeu Mini Akinator avait d’abord une version en console, mais grâce à Tkinter,
on peut maintenant le rendre plus moderne et accessible avec une interface
graphique :

L'utilisateur voit les questions affichées en grand
Il répond avec des boutons (✅ Oui / ❌ Non)
Une boîte de dialogue s’affiche pour apprendre en cas d’échec
Et il peut facilement relancer le jeu avec un bouton 🔄

Structure d'une interface Tkinter

Création d’une fenêtre principale:

Akinator-2

Page 1 sur 10

Dans cette deuxième étape, nous allons rendre ce projet un peu plus convivial en
implémentant une interface graphique grâce à la bibliothèque Tkinter.



Élément Rôle dans le jeu Code associé

tk.Label Affiche les questions et
réponses

self.label = tk.Label(...)

tk.Button Boutons pour "Oui",
"Non" et

é

tk.Button(master,
text="✅ Oui", ...)

simpledialog Demande à l’utilisateur
du texte (nouvelle
é ll

simpledialog.askstring(...)

messagebox Affiche des messages
d’information

messagebox.showinfo(...)

Page 2 sur 10

Ajout d’un widget
Un widget est un élément visuel : bouton, label, etc.

Tkinter dans notre projet Akinator

Classe AkinatorGUI
On regroupe toute l’interface dans une classe objet pour bien organiser le code.

Le déroulement du jeu avec l’interface

Étape 1 – Démarrer
Le bouton "▶️ Démarrer" appelle start_game()
On affiche la première question ou réponse



Page 3 sur 10

Étape 2 – Répondre
Quand l’utilisateur clique sur ✅ Oui ou ❌ Non, on appelle answer() :

Étape 3 – Apprendre
Si l’IA s’est trompée :

On demande la bonne réponse (simpledialog)
On demande une question pour distinguer les deux (simpledialog)
On demande si c’est "oui" ou "non" pour la bonne réponse (messagebox.askyesno)
On modifie l’arbre pour intégrer ce nouveau savoir

Interface conviviale

Le projet utilise :
Des boutons clairs et visuels (émoticônes)
Une taille fixe (root.geometry("500x400"))
Une police lisible (Helvetica 14 ou 16)
Des marges avec pack(pady=...) pour aérer l’interface

Élément Rôle

Tk() Crée la fenêtre
principale

Label Affiche les
questions/répons

Button Permet de cliquer
sur "Oui", "Non",

askstring() Demande une
réponse

askyesno() Pose une question
Oui/Non à

messagebox.show
info

Affiche une
notification



Page 4 sur 10

json : sert à sauvegarder et charger l’arbre du jeu (question/réponse) sous forme de
fichier .json.
os : permet de vérifier si le fichier JSON existe.
tkinter : pour construire l’interface graphique.
simpledialog : pour demander du texte à l'utilisateur.
messagebox : pour afficher des messages dans une boîte de dialogue

Un nœud est soit :
une question (avec deux branches : oui et non),
soit une réponse finale (feuille de l’arbre).

is_leaf() renvoie True si le nœud contient une réponse (et donc pas de question à poser).

Analyse du programme bloc par bloc



Page 5 sur 10

La fonction Serialize 
transforme un arbre de Node en dictionnaire Python prêt à être converti en JSON.
appelle récursivement serialize() sur les enfants.

La fonction deserialize 
transforme un dictionnaire JSON en objet Node.
Fonction récursive : elle reconstruit tout l’arbre.



Page 6 sur 10

Le constructeur de la classe AkinatorGUI reçoit une fenêtre Tkinter (master) et construit
l’interface utilisateur du jeu.

On charge l’arbre de questions depuis le fichier (ou on en crée un par défaut).
current_node : position actuelle dans l’arbre pendant le jeu.

save_tree() : enregistre l’arbre dans un fichier .json.
load_tree() : charge l’arbre existant ou en crée un tout simple (réponse par défaut : "un
chat").



Page 7 sur 10

Active les boutons.
Affiche la première question ou réponse.
Cache le bouton "Démarrer".

Label : texte affiché à l'écran (question ou réponse).
Boutons Oui / Non : désactivés au départ. Ils appellent self.answer(...).
start_button : sert à lancer ou relancer le jeu.



Page 8 sur 10

Si c’est une feuille :
Si l’IA a deviné : message de réussite.
Sinon : on appelle learn() pour apprendre une nouvelle réponse.
Ensuite, on désactive Oui/Non et affiche "Rejouer".

Si c’est une question, on descend dans l’arbre.

Retourne le texte à afficher selon le type du nœud (question ou réponse).



Page 9 sur 10

Demande :
À quoi pensait l’utilisateur.
Une question pour différencier la nouvelle réponse de l’ancienne.
Si la réponse à cette question est "oui" pour le nouvel objet.
Modifie l’arbre en conséquence.

Le nœud courant devient une nouvelle question.



Page 10 sur 10

Initialise la fenêtre principale.
Crée une instance de AkinatorGUI.
Démarre la boucle Tkinter (qui attend les actions de l’utilisateur).


