Akinator-2

Dans cette deuxieme étape, nous allons rendre ce projet un peu plus convivial en
implémentant une interface graphique grace a la bibliotheque Tkinter.

Tkinter est une bibliotheque intégrée a Python qui permet de créer des interfaces
graphiques (GUI).
Elle permet de:

o Afficher des fenétres (comme les fenétres d'une application classique)

e Ajouter des boutons, textes, images, zones de saisie, etc.

e Gérer des interactions utilisateur : clics, entrées clavier, etc.

Notre jeu Mini Akinator avait d’abord une version en console, mais grace a Tkinter,
on peut maintenant le rendre plus moderne et accessible avec une interface
graphique:

L'utilisateur voit les questions affichées en grand

Il répond avec des boutons (4 Oui / X Non)

Une boite de dialogue s'affiche pour apprendre en cas d'échec

Et il peut facilement relancer le jeu avec un bouton

Structure d'une interface Tkinter

Création d'une fenétre principale:

root = tk.Tk() # Crée la fenétre principale
root.geometry("588x408") # Définit la taille
root.mainloop() # Démarre la boucle d'événements

Page 1 sur 10

Ajout d'un widget
Un widget est un élément visuel : bouton, label, etc.

label = tk.Label(root, text="Blenvenue !")
label.pack()

Tkinter dans notre projet Akinator

Classe AkinatorGUI
On regroupe toute l'interface dans une classe objet pour bien organiser le code.

class AkinatorGUI:
def __init__ (self, master):

Elément Réle dans le jeu Code associé

tk.Label Affiche les questions et gqi¢ | ahel = tk. Label(...
réponses

tk Button Boutons pour "Oui", tk.Button(m.aster,
"Non" et text="l4 Oui", ...)

simpledialog Demande a futilisateur simpledialog.askstring(...)
du texte (nouvelle

messagebox Affiche des messages messagebox.showinfo(...)

d'information

Le déroulement du jeu avec l'interface

Etape 1 - Démarrer
Le bouton "[3d Démarrer" appelle start_game()
On affiche la premiére question ou réponse

def start _game(self):
self.current_node = self.root
self.label.config(text=self.get_ text(self.current_node))

Page 2 sur 10

Etape 2 - Répondre @]Kﬂ
Quand l'utilisateur clique sur 2 Oui ou X Non, on appelle answer() :

def answer(self, is_yes):
if self.current_node.is_leaf():
L’IA propose une réponse
S1 erreur = apprendre

On continue dans l’arbre
self.current_node = self.current_node.yes if is_yes else self.current_node.no

Etape 3 - Apprendre
Sil'lA s'est trompée :
e On demande la bonne réponse (simpledialog)
On demande une question pour distinguer les deux (simpledialog)
On demande si c'est "oui" ou "non" pour la bonne réponse (messagebox.askyesno)
On modifie 'arbre pour intégrer ce nouveau savoir

Interface conviviale

Le projet utilise :

Des boutons clairs et visuels (émoticones)

Une taille fixe (root.geometry("500x400"))

Une police lisible (Helvetica 14 ou 16)

e Des marges avec pack(pady=...) pour aérer l'interface

Elément Role

Tk() Crée la fenétre
principale

Label Affiche les

questions/répons

Button Permet de cliquer
sur "Oui", "Non",

Demande une
réponse

askstring()

Pose une question
Oui/Non a

askyesno()

messagebox.show = Affiche une
info notification

Page 3 sur 10

Analyse du programme bloc par bloc

import json
import os
import tkinter as tk

from tkinter import simpledialog, messagebox

json : sert a sauvegarder et charger l'arbre du jeu (question/réponse) sous forme de
fichier .json.

os : permet de vérifier si le fichier JSON existe.

tkinter : pour construire l'interface graphique.

simpledialog : pour demander du texte a l'utilisateur.

messagebox : pour afficher des messages dans une boite de dialogue

Classe représentant un neud de 1l'arbre de questions/réponses
class Node:
def __init__ (self, question=None, answer=None):
Une question (pour un neud interne) ou une réponse (pour une feuille)
self.question = question
self.answer = answer
Les branches enfants (oui / nen)
self.yes = None
self.no = None

Vérifie si ce neud est une feuille (donc contient une réponse)
def is_leaf(self):

return self.answer is not None

Un noeud est soit :

e une question (avec deux branches : oui et non),
e soit une réponse finale (feuille de I'arbre).

is_leaf() renvoie True si le nceud contient une réponse (et donc pas de question a poser).

&>

Page 4 sur 10

Sérialisation de 1l'arbre dans un dictionnaire JSON

def serialize(node):
if node is None:
return None

Si c'est une feuille, on stocke juste la réponse

if node.is_leaf():
return {"answer": node.answer}

Sinon on stocke la question et les branches oui/non

return {

"question": node.question,
": serialize(node.yes),
"no": serialize(node.no)

La fonction Serialize

récursivement

e transforme un arbre de Node en dictionnaire Python prét a étre converti en J[SON.
e appelle récursivement serialize() sur les enfants.

Désérialisation : recrée l'arbre a partir d'un dictionnaire JSON

def deserialize(data):
if "answer" in data:
Si c'est une feuille

return Node(answer=data["answer"])
Sinon, c'est un neud avec une question
node = Node(question=data["question"])
node.yes = deserialize(data["yes"])

node.no = deserialize(data["no"])
return node

La fonction deserialize

e transforme un dictionnaire JSON en objet Node.

e Fonction récursive : elle reconstruit tout

I'arbre.

Page 5sur 10

Sauvegarde de 1l'arbre dans un fichier JSON
def save_tree(node, filename):
with open(filename, 'w') as f:
json.dump(serialize(node), f)

Chargement de 1l'arbre depuis un fichier JSON
Si le fichier n'existe pas, on crée un arbre simple avec la réponse "un chat"
def load_tree(filename):
if os.path.exists(filename):
with open(filename, 'r') as f:
return deserialize(json.load(f))

else:
return Node(answer="un chat")

save_tree() : enregistre I'arbre dans un fichier .json.
load_tree() : charge I'arbre existant ou en crée un tout simple (réponse par défaut: "un
chat").

Classe principale gerant 1'interface graphique et la logique du jeu
class AkinatorGUI:
def __init__ (self, master):

Le constructeur de la classe AkinatorGUI recoit une fenétre Tkinter (master) et construit
I'interface utilisateur du jeu.

Nom du fichier ol l'arbre est stocké

self.tree_file = "base_jeu.json"

Chargement ou création de l'arbre

self.root = load_tree(self.tree file)

self.current_node = self.root # Le nmud courant dans 1'arbre (progression du jeu)

On charge l'arbre de questions depuis le fichier (ou on en crée un par défaut).
current_node : position actuelle dans I'arbre pendant le jeu.

Page 6 sur 10

Label pour afficher les questions ou réponses

self.label = tk.Label(master, text="Bienvenue dans Mini Akinator !\nClique sur Démarrer quand tu es prét.",

font=("Helvetica", 18), wraplength=428)
self.label.pack(pady=28)

Bouton Oui, désactivé au départ car le jeu n'a pas encore commenceé
self.button_yes = tk.Button(master, text="[4 oui", font=("Helvetica", 14),

command=lambda: self.answer(True), width=1@, state=tk.DISABLED)
self.button_yes.pack(pady=5)

Bouton Non, désactivé au départ
self.button_no = tk.Button(master, text=" Non", font=("Helvetica", 14),

command=lambda: self.answer(False), width=18, state=tk.DISABLED)
self.button_no.pack(pady=5)

Bouton Démarrer (au lancement visible), sert aussi pour rejouer
self.start_button = tk.Button(master, text="[J Démarrer”, font={"Helvetica", 14),

command=self.start_game, width=15)
self.start_button.pack(pady=20)

Label : texte affiché a I'écran (question ou réponse).
Boutons Oui / Non : désactivés au départ. s appellent self.answerf(...).
start_button : sert a lancer ou relancer le jeu.

Démarre le jeu (appelé au clic sur Démarrer ou Rejouer)
def start_game(self):
On masque le bouton Démarrer/Rejouer pendant la partie
self.start_button.pack_forget()
On active les boutons Oui et Non
self.button_yes.config(state=tk.NORMAL)
self.button_no.config(state=tk.NORMAL)
On remet le neud courant a la racine de 1'arbre
self.current_node = self.root
Affiche la premiére question ou réponse
self.label.config(text=self.get_text(self.current_node))

Active les boutons.
Affiche la premiere question ou réponse.
Cache le bouton "Démarrer".

Page 7 sur 10

Y

Renvoie le texte a afficher pour un neud (question ou réponse)
def get_text(self, node): a@:zﬂ Eﬂiﬁzﬁf
if node.is_leaf():
return node.answer # Feuille - réponse
else:

return node.question # Neud interne = question

Retourne le texte a afficher selon le type du nceud (question ou réponse).

Fonction appelée quand on clique Oui ou Non
def answer(self, is_yes):
if self.current_node.is_leaf():
5i on est sur une feuille, c'est la fin de la partie
if is_yes:
L'IA a deviné correctement
messagebox.showinfo("Brave !", "J'ai deviné | =®")
else:
L'IA s'est trompée, elle va apprendre
self.learn()
Aprés fin partie : désactiver Oui/Non
self.button_yes.config(state=tk.DISABLED)
self.button_no.config(state=tk.DISABLED)
Afficher le bouton Rejouer
self.start_button.config(text="E Rejouer")
self.start_button.pack(pady=28)
else:

Si c'est une question, on descend dans l'arbre selon la réponse
self.current_node = self.current_node.yes if is_yes else self.current_node.no
Met a jour le texte affiche (question ou reponse)
self.label.config(text=self.get_text(self.current_node))

Si c'est une feuille :
e SillA a deviné: message de réussite.
e Sinon : on appelle learn() pour apprendre une nouvelle réponse.
e Ensuite, on désactive Oui/Non et affiche "Rejouer".

Si cC'est une question, on descend dans l'arbre.

Page 8 sur 10

Fonction pour apprendre une nouvelle question/réponse si 1'IA s'est trompée
def learn(self):
Demande a 1'utilisateur ce a quoi il pensait réellement
correct = simpledialog.askstring("Je me suis trompé @", "A quoi pensais-tu ")
if not correct:
return # Si rien de saisi, on abandonne

Demande une guestion pour distinguer la bonne réponse de 1'ancienne
question = simpledialog.askstring(

“Apprends-moi 1",

f"Une question pour distinguer {correct} de {self.current_node.answer} ?"
)
if not question:

return # Abandon si pas de question

Demande si la réponse a cette question pour la nouvelle réponse est oui ou non
is_yes = messagebox.askyesno("Pour toi...",
f"Pour {correct}, la réponse a cette question est-elle OUI ?")

Sauvegarde 1'ancienne réponse pour ne pas la perdre

old_answer = self.current_node.answer

Transforme le neud actuel en question

self.current_node.question = question

if is_yes:
Branche oui = nouvelle réponse, branche non = ancienne réponse
self.current_node.yes = Node(answer=correct)
self.current_node.no = Node(answer=old_answer)

else:
Branche non = nouvelle réponse, branche oui = ancienne réponse
self.current_node.no = Node(answer=correct)
self.current_node.yes = Node(answer=o0ld_answer)

On enléve 1'ancienne réponse du neud car il est devenu une question

self.current_node.answer = None

messagebox,showinfo("Merci 1", "J[Pi appris quelque chose de nouveau & ")

Demande:
e A quoi pensait l'utilisateur.
e Une question pour différencier la nouvelle réponse de I'ancienne.
e Silaréponse a cette question est "oui" pour le nouvel objet.
e Modifie I'arbre en conséquence.
Le noeud courant devient une nouvelle question.

Page 9 sur 10

if name == " main_":

Création de la fenétre principale Tkinter

root = tk.Tk()

root.geometry("500x4008") # Tallle de la fenétre

app = AkinatorGUI(root) # Création de 1'application
root.mainloop() # Boucle principale Tkinter

Initialise la fenétre principale.
Crée une instance de AkinatorGUI.
Démarre la boucle Tkinter (qui attend les actions de l'utilisateur).

Page 10 sur 10

