Akinator-1

un jeu qui apprend a deviner amiaﬁ[ﬂ}j

Ce programme est un petit jeu de devinettes inspiré d’Akinator, dans lequel
I'ordinateur tente de deviner a quoi pense l'utilisateur — un animal, un objet, une
personne, etc.

Mais attention : au départ, 'ordinateur ne connait presque rien ! Il ne sait poser
gu'une seule question, et ne connait qu'une seule réponse.

Comment ¢a fonctionne ?
Le jeu se base sur un arbre de décision :

=N

Chaque nceud de l'arbre contient une question (par exemple : "Est-ce un animal ?")
Les feuilles de I'arbre représentent des réponses finales (par exemple : "un chat")
A chaque partie, le programme pose des questions "oui/non" pour naviguer dans
I'arbre, jusqu’a arriver a une réponse qu'il propose a l'utilisateur.

Et s'il se trompe ?
Cest la que le jeu devient intelligent !
Quand l'ordinateur se trompe, il demande :
e Labonne réponse a l'utilisateur.
e Une nouvelle question pour distinguer cette réponse de celle qu'il avait
proposeée.
e S'il faut répondre "oui" ou "non" a cette nouvelle question pour reconnaitre la
bonne réponse.

Page 1 sur 8

Avec ces éléments, il ajoute une nouvelle branche a son arbre. Ainsi, il devient
un peu plus intelligent a chaque erreur.

Ce mécanisme simple est un exemple de ce qu'on appelle en informatique
'apprentissage automatique (machine learning) :

un programme s'améliore avec I'expérience, en utilisant les nouvelles données
gu’on lui donne pour mieux répondre a l'avenir.

Au début, il n'y a qu’une seule question dans I'arbre. Mais plus on joue, plus
I'arbre grandit : le nombre de questions augmente, les réponses deviennent plus
variées, et I'ordinateur devient de plus en plus performant pour deviner ce que
vous avez en téte.

Implémentation en python

Ce projet est complexe et nécessite la maitrise de 3 notions fondamentale en python:
e La programmation orientée objet
e Lastructure de données en arbre
e Le format de stockage de données JSON

Nous allons ici faire un bref rappel de ces 3 notions.

La programmation orientée objet

La POO est un paradigme de programmation qui organise le code en objets.

Un objet est une instance d’'une classe.

Une classe est comme un plan (un modéle) qui décrit quelles données (attributs) et
guelles actions (méthodes) un objet peut avoir.

Classe : définition d'un type d'objet.

Objet : instance d'une classe.

Attributs : variables attachées a un objet (ex : question, réponse).

Méthodes : fonctions attachées a un objet (ex : vérifier si un noeud est une feuille).
Encapsulation : cacher la complexité et protéger les données.

Constructeur : méthode spéciale __init_ () pour créer un objet avec des valeurs initiales.

Page 2 sur 8

class Node:
def __init__(self, question=None, answer=None):
self.question = question
self.answer = answer
self.yes = None
self.no = None

def is_leaf(self):
return self.answer is not None

Ici, Node est une classe qui représente un élément (un noeud) dans l'arbre du
jeu.
Chaque node peut avoir une question, ou une réponse finale (feuille).

Méthode is_leaf() permet de savoir si ce node est une feuille (une réponse).

Les arbres (structure de données)

Un arbre est une structure de données composée de nceuds reliés entre eux par
des liens (arétes).

Le premier nceud s'appelle la racine.

Chaque nceud peut avoir plusieurs nceuds enfants (dans notre cas : 2, oui/non).
Un nceud sans enfants est appelé une feuille.

Pourquoi utiliser un arbre dans Akinator ?

Pour poser des questions en suivant un chemin selon les réponses.

Chaque question correspond a un nceud interne.

Chaque réponse finale (objet deviné) est une feuille.

[Est-ce un animal ?]

/ \
Oui / Y\ Non
/ %
[Est-ce un chat ?] [C'est un objet ?]
/ \ / \
Oui Non Oui Non
(chat) (chien) (chaise) (voiture)

Page 3 sur 8

Ici chaque Node contient 2 références : oui et non vers d'autres nceuds.

Le parcours de l'arbre se fait selon la réponse utilisateur.

JSON (JavaScript Object Notation)

JSON est un format léger pour stocker et échanger des données.
C'est une chaine de caracteres qui représente des objets, listes, valeurs simples.

Facilement lisible par 'homme et manipulable par les langages de programmation.

Pourquoi JSON dans Akinator ?

Pour sauvegarder |'état de l'arbre (questions et réponses) dans un fichier.
Pour pouvoir le recharger a la prochaine utilisation, et que le jeu "se souvienne".

"question": "Est-ce un animal ?",
"yes": {
"question": "Est-ce un chat ?",
"yes": {"answer": "chat"},
"no" "answer": "chien"}
+s
Ilnoll: {
"question": "Est-ce un objet ?",
"yes": {"answer": "chaise"},
"no" "answer": "voiture"}

En Python, pour sauvegarder, on convertit 'arbre en dictionnaire Python, puis on utilise

json.dump().

Pour charger, on lit le fichier JSON, on convertit en dictionnaire avec json.load(), puis on

reconstitue les objets Node.

Page 4 sur 8

fm

Analyse du programme bloc par bloc @E&D T

import json

import os

json sert a manipuler des fichiers JSON (pour sauvegarder et charger la base de données
du jeu).

os permet de vérifier I'existence d’un fichier (utile pour savoir si la base de données
existe déja).

Classe représentant un noeud dans 1l'arbre de décision
class Node:
def __init__ (self, question=None, answer=None):
self.question = question # Question a poser si ce n’est pas une feuille

self.answer = answer # Réponse (seulement pour les feuilles)
self.yes = None # Branche si la réponse est "oui"
self.no = None # Branche si la réponse est "non"

Méthode pour savoir si ce noeud est une feuille (réponse finale)
def is_leaf(self):
return self.answer is not None

La classe Node représente un noeud de l'arbre.
Chaque Node peut contenir :
e une question (pour nceud interne),
e ou une réponse (pour feuille, c'est-a-dire la proposition finale).
e Les attributs yes et no pointent vers d’autres Node selon la réponse.
La méthode is_leaf() retourne True si le nceud est une feuille (posséde une réponse).

Fonction pour poser une question oui/non a l'utilisateur
def ask_yes_no(question):
while True:
ans = input(question +
if ans in ['oui', ‘non']:
return ans == 'oui' # Retourne True si "oui", sinon False

(oui/non) ").lower()

Pose une question a l'utilisateur, attend une réponse "oui" ou "non".
Repose la question tant qu'une réponse valide n'est pas donnée.
Retourne True si la réponse est "oui", sinon False.

Page 5sur 8

Fonction principale pour jouer avec un noeud donné
def play(node):
if node.is_leaf():
On est sur une feuille : proposer une réponse
if ask_yes_no(f"Est-ce que tu penses a {node.answer} ?"):
print("Super ! J'ai deviné | &™)
else:
Echec : demander & l’utilisateur la bonne réponse et une question pour la différencier
print("Zut ! 3%ai échous. @")
correct_answer = input("A quoi pensais-tu ? ")
new_question = input(f"Donne-moi une questicon pour distinguer {correct_answer} de {node.answer} : ")

Demander si la réponse au nouvel objet est "oui™
if ask_yes_no(f"Pour {correct_answer}, la réponse a cette question est-elle 'oui' ?"):
node.question = new_question
node.yes = Node(answer=scorrect_answer)
node.no = Node(answer=node.answer)
else:
node.question = new_question
node.no = Node(answer=correct_answer)
node.yes = Node(answer=node.answer)

Ce noeud n'est plus une feuille
node.answer = None
else:

S1 c’est une question, continuer & descendre dans l’arbre
if ask_vyes_no(node.question):

play(node.yes)
else:

play(node.no)

Si le nceud est une feuille :
e Le programme propose sa réponse.
e Sicestvrai, il affiche un message de succes.
e Sinon, il demande a l'utilisateur la bonne réponse et une question pour la
différencier.
e Puis il modifie le nceud actuel pour devenir un nceud interne avec cette nouvelle
qguestion, créant deux branches (oui/non).
Sinon (nceud interne) :
e e programme pose la question du nceud.
e Selon la réponse "oui" ou "non", il appelle récursivement play sur le nceud enfant
correspondant.

Page 6 sur 8

Y

AN Al

Sauvegarder 1’arbre dans un fichier JSON
def save_tree(node, filename):
with open(filename, 'w') as f:
json.dump(serialize(node), f)

Charger l’arbre depuis un fichier JSON (ou créer un arbre par défaut)
def load_tree(filename):
if os.path.exists(filename):
with open(filename, 'r') as f:
return deserialize(json.load(f))

else:
Arbre par défaut avec une seule réponse
return Node(answer="un chat")

save_tree : convertit I'arbre en dictionnaire (via serialize) et 'enregistre dans un
fichier JSON.

load_tree : charge le fichier JSON s'il existe, le transforme en dictionnaire, puis en
arbre avec deserialize. Sinon, crée un arbre par défaut avec une seule réponse
"un chat".

Convertit un arbre en dictionnaire (pour le JSON)
def serialize(node):
if node is None:
return None
if node.is_leaf():
return {"answer": node.answer}

return {
"question": node.question,
"yes": serialize(node.yes),
"no": serialize(node.no)

}

Reconstruit 1’arbre depuis un dictionnaire (aprés lecture JSON)
def deserialize(data):

if "answer" in data:

return Node(answer=data["answer™])

node = Node(question=data["question”])

node.yes = deserialize(data["yes"])

node.no = deserialize(data["nc"])

return node

Page 7 sur 8

serialize : transforme un arbre de Node en dictionnaire récursivement, prét a
étre converti en JSON.
deserialize : fait I'inverse, transforme un dictionnaire JSON en arbre Node.

=== Jeu principal ===

Nom du fichier contenant la base de connaissances
tree_file = "base_jeu.json"

Charger l’arbre existant ou en créer un nouveau
root = load_tree(tree_file)

print("Pense a un objet, un animal ou une personne. Je vais deviner | ="

Boucle principale du jeu
while True:
play(root)
if not ask_yes_no("Veux-tu rejouer ?"):
break

Sauvegarde de 1'arbre aprés le jeu
save_tree(root, tree_file)
print("Merci d*avoir joué ! ")

Charge l'arbre de décision.

Explique le principe au joueur.

Boucle infinie qui joue la partie, puis demande si on veut rejouer.
A la sortie, sauvegarde la base dans un fichier JSON.

Affiche un message de remerciement.

Page 8 sur 8

